Поиск в словарях
Искать во всех

Большая советская энциклопедия - гильбертово пространство

 

Гильбертово пространство

гильбертово пространство
Гильбертово пространство, математическое понятие, обобщающее понятие евклидова пространства на бесконечномерный случай. Возникло на рубеже 19 и 20 вв. в виде естественного логического вывода из работ нем. математика Гильберта в результате обобщения фактов и методов, относящихся к разложениям функций в ортогональные ряды и к исследованию интегральных уравнений. Постепенно развиваясь, понятие «Г. п.» находило все более широкие приложения в различных разделах математики и теоретической физики; оно принадлежит к числу важнейших понятии математики. Первоначально Г. п. понималось как пространство последовательностей со сходящимся рядом квадратов (т. н. пространство l2). Элементами (векторами) такого пространства являются бесконечные числовые последовательности x = (x1, x2,..., xn,...) такие, что ряд x21 + x22 +... + х2n + ... сходится. Сумму двух векторов х + y и вектор lx, где l — действительное число, определяют естественным образом: x + y = (x1 + y1,..., xn + yn,...), lx = (lx1, lx2, ..., lxn,...)/ Для любых векторов х, y I l2 формула (x, y) = x1y1 + x2y2 + ... +xnyn + ... определяет их скалярное произведение, а под длиной (нормой) вектора х понимается неотрицательное число Скалярное произведение всегда конечно и удовлетворяет неравенству |(х, у)| ?

x

y

. Последовательность векторов хn называется сходящейся к вектору х, если

хn—х

® 0 при n ® ?. Многие определения и факты теории конечномерных евклидовых пространств переносятся и на Г. п. Например, формула где 0 ? j ? p определяет угол j между векторами х и у. Два вектора х и у называются ортогональными, если (х, у) = 0. Пространство l2 полно: всякая фундаментальная последовательность Коши элементов этого пространства (т. е. последовательность хn, удовлетворяющая условию

хп—хm

® 0 при n, m ® ?) имеет предел. В отличие от евклидовых пространств, Г. п. l2 бесконечномерно, т. е. в нем существуют бесконечные системы линейно независимых векторов; например, такую систему образуют единичные векторы e1 = (1, 0, 0,...), e2 = (0, 1, 0,...),... При этом для любого вектора x из l2 имеет место разложение x = x1e1 + x2e2 +... (1) по системе {en}. Другим важным примером Г. п. служит пространство l2 всех измеримых функций, заданных на некотором отрезке a, b, для которых конечен интеграл понимаемый как интеграл в смысле Лебега. При этом функции, отличающиеся друг от друга лишь на множество меры нуль, считаются тождественными. Сложение функций и умножение их на число определяется обычным способом, а под скалярным произведением понимается интеграл Норма в этом случае равна Роль единичных векторов предыдущего примера здесь могут играть любые функции ji(x) из L2, обладающие свойствами ортогональности и нормированности а также следующим свойством замкнутости: если f(x) принадлежит L2 и то f(x) = 0 всюду, кроме множества меры нуль. На отрезке ,2p в качестве такой системы функций можно взять тригонометрическую систему Разложению (1) соответствует разложение функции f(x) из L2 в ряд Фурье сходящийся к f(x) по норме пространства L2. При этом для всякой функции f(x) выполняется равенство Парсеваля Соответствие между функциями f(x) из L2 и последовательностями их коэффициентов Фурье a0, a1, b1, a2, b2,... является взаимно однозначным отображением L2 на l2, сохраняющим операции сложения, умножения на числа, а также сохраняющим длины и скалярные произведения. Т. о., эти пространства изоморфны и изометричны, значит имеют одинаковое строение. В более широком смысле под Г. п. понимают произвольное линейное пространство, в котором задано скалярное произведение и которое является полным относительно нормы, порождаемой этим скалярным произведением. В зависимости от того, определено ли для элементов Г. п. Н умножение только на действительные числа или же элементы из Н можно умножать на произвольные комплексные числа, различают действительное и комплексное Г. п. В последнем случае под скалярным произведением понимают комплексную функцию (х, у), определенную для любой пары х, у элементов из Н и обладающую следующими свойствами: 1) (х, х) = 0 в том и только том случае, если х = 0, 2) (х, х) ? 0 для любого x из Н, 3) (х + у, z) = (x, z) + (у, z), 4) (lx, у) = l(x, у) для любого комплексного числа l, 5) где черта означает комплексно сопряженную величину. Норма элемента х определяется равенством Комплексные Г. п. играют в математике и в ее приложениях значительно большую роль, чем действительные Г. п. Одним из важнейших направлений теории Г. п. является изучение линейных операторов в Г. п. (см. Операторов теория). Именно с этим кругом вопросов связаны многочисленные применения Г. п. в теории дифференциальных и интегральных уравнений, теории вероятностей, квантовой механике и т. д. Лит.: Колмогоров А. Н., Фомин С. В., Элементы теории функций и функционального анализа, 2 изд., М., 1968; Люстерник Л. А., Соболев В. И., Элементы функционального анализа, 2 изд., М., 1965; Данфорд Н., Шварц Дж., Линейные операторы, т. 1 — Общая теория, пер. с англ., М., 1962; Дэй М. М., Нормированные линейные пространства, пер. с англ., М., 1961. Ю. В. Прохоров.

Рейтинг статьи:
Комментарии:

См. в других словарях

1.
  математическое понятие, обобщающее понятие евклидова пространства на бесконечномерный случай. Возникло на рубеже 19 и 20 вв. в работах Д. Гильберта; находит широкое приложение в различных разделах математики и теоретической физики. ...
Большой энциклопедический словарь

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):

Самые популярные термины